mirror of
https://gitlab.com/kupfer/kupferbootstrap.git
synced 2025-02-23 05:35:44 -05:00
TEMP: override DataClass.ToDict()
This commit is contained in:
parent
53ef22d6b8
commit
72f4d4948e
1 changed files with 114 additions and 6 deletions
120
dataclass.py
120
dataclass.py
|
@ -2,23 +2,27 @@ from __future__ import annotations
|
|||
|
||||
from dataclasses import dataclass
|
||||
from munch import Munch
|
||||
from typing import ClassVar, Optional, Union, Mapping, Any, get_type_hints, get_origin, get_args, Iterable
|
||||
from typing import ClassVar, Optional, Union, Mapping, Any, get_type_hints, get_origin, get_args, GenericAlias, Iterable
|
||||
from types import UnionType
|
||||
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
def munchclass(*args, init=False, **kwargs):
|
||||
return dataclass(*args, init=init, slots=True, **kwargs)
|
||||
|
||||
|
||||
def resolve_type_hint(hint: type) -> Iterable[type]:
|
||||
def resolve_type_hint(hint: type, ignore_origins: list[type] = []) -> Iterable[type]:
|
||||
origin = get_origin(hint)
|
||||
args: Iterable[type] = get_args(hint)
|
||||
if origin in ignore_origins:
|
||||
return [hint]
|
||||
if origin is Optional:
|
||||
args = set(list(args) + [type(None)])
|
||||
args = set(list(args) + [NoneType])
|
||||
if origin in [Union, UnionType, Optional]:
|
||||
results: list[type] = []
|
||||
for arg in args:
|
||||
results += resolve_type_hint(arg)
|
||||
results += resolve_type_hint(arg, ignore_origins=ignore_origins)
|
||||
return results
|
||||
return [origin or hint]
|
||||
|
||||
|
@ -26,6 +30,8 @@ def resolve_type_hint(hint: type) -> Iterable[type]:
|
|||
class DataClass(Munch):
|
||||
|
||||
_type_hints: ClassVar[dict[str, Any]]
|
||||
_strip_hidden: ClassVar[bool] = False
|
||||
_sparse: ClassVar[bool] = False
|
||||
|
||||
def __init__(self, d: dict = {}, validate: bool = True, **kwargs):
|
||||
self.update(d | kwargs, validate=validate)
|
||||
|
@ -39,7 +45,7 @@ class DataClass(Munch):
|
|||
type_hints = cls._type_hints
|
||||
if key in type_hints:
|
||||
_classes = tuple[type](resolve_type_hint(type_hints[key]))
|
||||
optional = type(None) in _classes
|
||||
optional = NoneType in _classes
|
||||
if issubclass(_classes[0], dict):
|
||||
assert isinstance(value, dict) or optional
|
||||
target_class = _classes[0]
|
||||
|
@ -89,7 +95,20 @@ class DataClass(Munch):
|
|||
|
||||
@classmethod
|
||||
def fromDict(cls, values: Mapping[str, Any], validate: bool = True):
|
||||
return cls(**cls.transform(values, validate))
|
||||
return cls(d=values, validate=validate)
|
||||
|
||||
def toDict(
|
||||
self,
|
||||
strip_hidden: Optional[bool] = None,
|
||||
sparse: Optional[bool] = None,
|
||||
):
|
||||
return strip_dict(
|
||||
self,
|
||||
hints=self._type_hints,
|
||||
strip_hidden=self._strip_hidden if strip_hidden is None else strip_hidden,
|
||||
sparse=self._sparse if sparse is None else sparse,
|
||||
recursive=True,
|
||||
)
|
||||
|
||||
def update(self, d: Mapping[str, Any], validate: bool = True):
|
||||
Munch.update(self, type(self).transform(d, validate))
|
||||
|
@ -100,3 +119,92 @@ class DataClass(Munch):
|
|||
|
||||
def __repr__(self):
|
||||
return f'{type(self)}{dict.__repr__(self.toDict())}'
|
||||
|
||||
def toYaml(self, strip_hidden: bool = False, sparse: bool = False, **yaml_args) -> str:
|
||||
import yaml
|
||||
return yaml.dump(
|
||||
self.toDict(strip_hidden=strip_hidden, sparse=sparse),
|
||||
**yaml_args,
|
||||
)
|
||||
|
||||
def toToml(self, strip_hidden: bool = False, sparse: bool = False, **toml_args) -> str:
|
||||
import toml
|
||||
return toml.dumps(
|
||||
self.toDict(strip_hidden=strip_hidden, sparse=sparse),
|
||||
**toml_args,
|
||||
)
|
||||
|
||||
|
||||
def flatten_hints(hints: Any) -> list[Any]:
|
||||
if not isinstance(hints, (list, tuple)):
|
||||
yield hints
|
||||
return
|
||||
for i in hints:
|
||||
yield from flatten_hints(i)
|
||||
|
||||
|
||||
def strip_dict(
|
||||
d: dict[Any, Any],
|
||||
hints: dict[str, Any],
|
||||
strip_hidden: bool = False,
|
||||
sparse: bool = False,
|
||||
recursive: bool = True,
|
||||
) -> dict[Any, Any]:
|
||||
result = dict(d)
|
||||
if not (strip_hidden or sparse or result):
|
||||
print(f"shortcircuiting {d=}")
|
||||
return result
|
||||
print(f"Stripping {result} with hints: {hints}")
|
||||
for k, v in d.items():
|
||||
if not isinstance(k, str):
|
||||
print(f"skipping unknown key type {k=}")
|
||||
continue
|
||||
if strip_hidden and k.startswith('_'):
|
||||
result.pop(k)
|
||||
continue
|
||||
if sparse and (v is None and NoneType in resolve_type_hint(hints.get(k, "abc"))):
|
||||
print(f"popping empty {k}")
|
||||
result.pop(k)
|
||||
continue
|
||||
if recursive and isinstance(v, dict):
|
||||
if not v:
|
||||
result[k] = {}
|
||||
continue
|
||||
if isinstance(v, DataClass):
|
||||
print(f"Dataclass detected in {k=}")
|
||||
result[k] = v.toDict(strip_hidden=strip_hidden, sparse=sparse)
|
||||
continue
|
||||
if isinstance(v, Munch):
|
||||
print(f"Converting munch {k=}")
|
||||
result[k] = v.toDict()
|
||||
if k not in hints:
|
||||
print(f"skipping unknown {k=}")
|
||||
continue
|
||||
print(f"STRIPPING RECURSIVELY: {k}: {v}, parent hints: {hints[k]}")
|
||||
_subhints = {}
|
||||
_hints = resolve_type_hint(hints[k], [dict])
|
||||
hints_flat = list(flatten_hints(_hints))
|
||||
print(f"going over hints for {k}: {_hints=} {hints_flat=}")
|
||||
|
||||
for hint in hints_flat:
|
||||
print(f"working on hint: {hint}")
|
||||
if get_origin(hint) == dict:
|
||||
_valtype = get_args(hint)[1]
|
||||
_subhints = {n: _valtype for n in v.keys()}
|
||||
print(f"generated {_subhints=} from {_valtype=}")
|
||||
break
|
||||
if isinstance(hint, type) and issubclass(hint, DataClass):
|
||||
_subhints = hint._type_hints
|
||||
print(f"found subhints: {_subhints}")
|
||||
break
|
||||
else:
|
||||
print(f"ignoring {hint=}")
|
||||
print(f"STRIPPING SUBDICT {k=} WITH {_subhints=}")
|
||||
result[k] = strip_dict(
|
||||
v,
|
||||
hints=_subhints,
|
||||
sparse=sparse,
|
||||
strip_hidden=strip_hidden,
|
||||
recursive=recursive,
|
||||
)
|
||||
return result
|
||||
|
|
Loading…
Add table
Reference in a new issue